Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Global transposon mutagenesis is a valuable tool for identifying genes required for cell viability. Here we present a global analysis of the orientation of viable Tn 5 -Puro r (Tn 5 -puromycin resistance) insertions into the near-minimal bacterial genome of JCVI-syn2.0. Sixteen of the 478 protein-coding genes show a noticeable asymmetry in the orientation of disrupting insertions of Tn 5 -Puro r . Ten of these are located in operons, upstream of essential or quasi-essential genes. Inserts transcribed in the same direction as the downstream gene are favored, permitting read-through transcription of the essential or quasi-essential gene. Some of these genes were classified as quasi-essential solely because of polar effects on the expression of downstream genes. Three genes showing asymmetry in Tn 5 -Puro r insertion orientation prefer the orientation that avoids collisions between read-through transcription of Tn 5 -Puro r and transcription of an adjacent gene. One gene (JCVISYN2_0132 [abbreviated here as “_0132”]) shows a strong preference for Tn 5 -Puro r insertions transcribed upstream, away from the downstream nonessential gene _0133. This suggested that expression of _0133 due to read-through from Tn 5 -Puro r is lethal when _0132 function is disrupted by transposon insertion. This led to the identification of genes _0133 and _0132 as a toxin-antitoxin pair. The three remaining genes show read-through transcription of Tn 5 -Puro r directed downstream and away from sizable upstream intergenic regions (199 bp to 363 bp), for unknown reasons. In summary, polar effects of transposon insertion can, in a few cases, affect the classification of genes as essential, quasi-essential, or nonessential and sometimes can give clues to gene function. IMPORTANCE In studies of the minimal genetic requirements for life, we used global transposon mutagenesis to identify genes needed for a minimal bacterial genome. Transposon insertion can disrupt the function of a gene but can also have polar effects on the expression of adjacent genes. In the Tn 5 -Puro r construct used in our studies, read-through transcription from Tn 5 -Puro r can drive expression of downstream genes. This results in a preference for Tn 5 -Puro r insertions transcribed toward a downstream essential or quasi-essential gene within the same operon. Such polar effects can have an impact on the classification of genes as essential, quasi-essential, or nonessential, but this has been observed in only a few cases. Also, polar effects of Tn 5 -Puro r insertion can sometimes give clues to gene function.more » « less
-
One way that researchers can test whether they understand a biological system is to see if they can accurately recreate it as a computer model. The more they learn about living things, the more the researchers can improve their models and the closer the models become to simulating the original. In this approach, it is best to start by trying to model a simple system. Biologists have previously succeeded in creating ‘minimal bacterial cells’. These synthetic cells contain fewer genes than almost all other living things and they are believed to be among the simplest possible forms of life that can grow on their own. The minimal cells can produce all the chemicals that they need to survive – in other words, they have a metabolism. Accurately recreating one of these cells in a computer is a key first step towards simulating a complete living system. Breuer et al. have developed a computer model to simulate the network of the biochemical reactions going on inside a minimal cell with just 493 genes. By altering the parameters of their model and comparing the results to experimental data, Breuer et al. explored the accuracy of their model. Overall, the model reproduces experimental results, but it is not yet perfect. The differences between the model and the experiments suggest new questions and tests that could advance our understanding of biology. In particular, Breuer et al. identified 30 genes that are essential for life in these cells but that currently have no known purpose. Continuing to develop and expand models like these to reproduce more complex living systems provides a tool to test current knowledge of biology. These models may become so advanced that they could predict how living things will respond to changing situations. This would allow scientists to test ideas sooner and make much faster progress in understanding life on Earth. Ultimately, these models could one day help to accelerate medical and industrial processes to save lives and enhance productivity.more » « less
An official website of the United States government
